
FERMI NATIONAL ACCELERATOR LABORATORY

FERMILAB-TM-2403-E
TEVEWWG/top 2008/01

CDF Note 9225
DØ Note 5626

6th March 2008

Combination of CDF and DØ Results
on the Mass of the Top Quark

The Tevatron Electroweak Working Group1

for the CDF and DØ Collaborations

Abstract

We summarize the top-quark mass measurements from the CDF and DØ experiments at
Fermilab. We combine published Run-I (1992-1996) measurements with the most recent
preliminary Run-II (2001-present) measurements using up to 2.1 fb−1 of data. Taking
correlated uncertainties properly into account the resulting preliminary world average
mass of the top quark is Mt = 172.6 ± 0.8(stat) ± 1.1(syst) GeV/c2, assuming Gaussian
systematic uncertainties. Adding in quadrature yields a total uncertainty of 1.4 GeV/c2,
corresponding to a relative precision of 0.8% on the top-quark mass.

1The Tevatron Electroweak Working Group can be contacted at tev-ewwg@fnal.gov.
More information can be found at http://tevewwg.fnal.gov.
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1 Introduction

The experiments CDF and DØ, taking data at the Tevatron proton-antiproton collider lo-
cated at the Fermi National Accelerator Laboratory, have made several direct experimental
measurements of the top-quark pole mass, Mt. The pioneering measurements were based on
about 100 pb−1 of Run-I (1992-1996) data [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] and include
results from the tt → qq′bqq′b (all-j), the tt → `νqq′bb (l+j), and the tt → `+νb`−νb (di-
l) decay channels2. The Run-II measurements summarized here are the most recent results
in the l+j, di-l, and all-j channels using 1.9 − 2.1 fb−1 of data and improved analysis tech-
niques [13, 14, 15, 16, 17, 18, 19, 20, 21].

This note reports the world average top-quark mass obtained by combining five published
Run-I measurements [2, 3, 5, 7, 10, 11] with one published Run-II CDF result [13], three
preliminary Run-II CDF results [14, 15, 16] and three preliminary Run-II DØ results [17, 18,
21]. The combination takes into account the statistical and systematic uncertainties and their
correlations using the method of references [22, 23] and supersedes previous combinations [24,
25, 26, 27, 28].

The input measurements and error categories used in the combination are detailed in Sec-
tion 2 and 3, respectively. The correlations used in the combination are discussed in Section 4
and the resulting world average top-quark mass is given in Section 5. A summary and outlook
are presented in Section 6.

2 Input Measurements

For this combination twelve measurements of Mt are used, five published Run-I results, and
one published plus six preliminary Run-II results, all reported in Table 1. In general, the Run-I
measurements all have relatively large statistical uncertainties and their systematic uncertainty
is dominated by the total jet energy scale (JES) uncertainty. In Run-II both CDF and DØ take
advantage of the larger tt samples available and employ new analysis techniques to reduce both
these uncertainties. In particular the JES is constrained using an in-situ calibration based on
the invariant mass of W → qq′ decays in the l+j and all-j channels. The Run-II DØ analysis in
the l+j channel constrains the response of light-quark jets using the in-situ W → qq ′ decays.
Residual JES uncertainties associated with η− and pT -dependencies as well as uncertainties
specific to the response of b-jets are treated separately. Similarly, the Run-II CDF analysis
in the l+j and all-j channels also constrain the JES using the in-situ W → qq ′ decays. Small
residual JES uncertainties arising from η− and pT -dependencies and the modeling of b-jets are

2Here ` = e or µ. Decay channels with explicit tau lepton identification are presently under study and are
not yet used for measurements of the top-quark mass.
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Run-I published Run-II preliminary

CDF DØ CDF DØ

all-j l+j di-l l+j di-l l+j di-l all-j lxy l+j/a l+j/b di-l

Result 186.0 176.1 167.4 180.1 168.4 172.7 171.2 177.0 180.7 170.5 173.0 173.7

iJES 0.0 0.0 0.0 0.0 0.0 1.3 0.0 1.8 0.0 0.0 0.0 0.0

aJES 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.8 1.9

bJES 0.6 0.6 0.8 0.7 0.7 0.4 0.1 0.1 0.0 0.2 0.1 0.9

cJES 3.0 2.7 2.6 2.0 2.0 0.5 1.7 0.6 0.0 0.0 0.0 2.1

dJES 0.3 0.7 0.6 0.0 0.0 0.1 0.1 0.1 0.0 1.7 1.4 0.9

rJES 4.0 3.4 2.7 2.5 1.1 0.2 1.8 0.5 0.3 0.0 0.0 0.0

Signal 1.8 2.6 2.8 1.1 1.8 0.6 0.7 0.6 1.4 1.0 0.5 0.8

BG 1.7 1.3 0.3 1.0 1.1 0.6 0.4 1.0 7.2 0.5 0.4 0.6

Fit 0.6 0.0 0.7 0.6 1.1 0.2 0.6 0.6 4.2 0.1 0.2 0.9

MC 0.8 0.1 0.6 0.0 0.0 0.4 0.7 0.3 0.7 0.0 0.0 0.2

UN/MI 0.0 0.0 0.0 1.3 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Syst. 5.7 5.3 4.9 3.9 3.6 1.7 2.8 2.4 8.5 2.2 1.7 3.4

Stat. 10.0 5.1 10.3 3.6 12.3 1.2 2.7 3.3 14.5 1.9 1.3 5.4

Total 11.5 7.3 11.4 5.3 12.8 2.1 3.9 4.1 16.8 2.9 2.2 6.4

Table 1: Summary of the measurements used to determine the world average Mt. All numbers
are in GeV/c2. The error categories and their correlations are described in the text. The
total systematic uncertainty and the total uncertainty are obtained by adding the relevant
contributions in quadrature.

included in separate error categories. The Run-II CDF di-l measurement uses a JES determined
from external calibration samples. Some parts of the associated uncertainty are correlated with
the Run-I JES uncertainty as noted below.

In previous combinations the Run-II CDF l+j analysis used the JES determined from the
external calibration as an additional Gaussian constraint. This required us to treat that mea-
surement as two separate inputs in the combination in order to accurately account for all the
JES correlations. This Gaussian constraint is not used in the present analysis as it does not
significantly improve the sensitivity. Thus we can treat this measurement as a single input in
the same manner as all the other measurements.

As discussed in the previous combination, a new analysis technique from CDF is included
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(lxy). This measurement uses the mean decay-length from B-tagged jets to determine the
top-quark mass. While the statistical sensitivity is not nearly as good as the more traditional
methods, this technique has the advantage that since it uses only tracking information, it is
almost entirely independent of JES uncertainties. As the statitistics of this sample continue to
grow, this method could offer a nice cross-check of the top-quark mass that’s largely indepen-
dent of the dominant JES systematic uncertainty which plagues the other measurements. The
statistical correlation between this measurement and the Run-II CDF l+j measurement is deter-
mined using Monte Carlo signal-plus-background psuedo-experiments which correctly account
for the sample overlap and is found to be consistent with zero (to within < 1%) independent
of the assumed top-quark mass.

The two DØ Run-II lepton+jets results [17, 18] are derived from Run-IIa and Run-IIb
datasets, respectively, and are labelled as such. The DØ Run-II dilepton result [21] is itself a
combination of two results using different techniques but the same di-lepton data set [19, 20].

Table 1 also lists the uncertainties of the results, sub-divided into the categories described
in the next Section. The correlations between the inputs are described in Section 4.

3 Error Categories

We employ the same error categories as used for the previous world average [28]. They include
a detailed breakdown of the various sources of uncertainty and aim to lump together sources of
systematic uncertainty that share the same or similar origin. For example, the “Signal” category
discussed below includes the uncertainties from ISR, FSR, and PDF - all of which affect the
modeling of the tt signal. Additional categories are included in order to accommodate specific
types of correlations. For example, the jet energy scale (JES) uncertainty is sub-divided into
several components in order to more accurately accommodate our best estimate of the relevant
correlations. Each error category is discussed below.

Statistical: The statistical uncertainty associated with the Mt determination.

iJES: That part of the JES uncertainty which originates from in-situ calibration procedures
and is uncorrelated among the measurements. In the combination reported here it cor-
responds to the statistical uncertainty associated with the JES determination using the
W → qq′ invariant mass in the CDF Run-II l+j and all-h measurements. Residual JES
uncertainties, which arise from effects not considered in the in-situ calibration, are in-
cluded in other categories.

aJES: That part of the JES uncertainty which originates from differences in detector e/h
response between b-jets and light-quark jets. It is specific to the DØ Run-II measurements
and is taken to be uncorrelated with the DØ Run-I and CDF measurements.
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bJES: That part of the JES uncertainty which originates from uncertainties specific to the
modeling of b-jets and which is correlated across all measurements. For both CDF and
DØ this includes uncertainties arising from variations in the semi-leptonic branching
fraction, b-fragmentation modeling, and differences in the color flow between b-jets and
light-quark jets. These were determined from Run-II studies but back-propagated to the
Run-I measurements, whose rJES uncertainties (see below) were then corrected in order
to keep the total JES uncertainty constant.

cJES: That part of the JES uncertainty which originates from modeling uncertainties corre-
lated across all measurements. Specifically it includes the modeling uncertainties associ-
ated with light-quark fragmentation and out-of-cone corrections.

dJES: That part of the JES uncertainty which originates from limitations in the calibration
data samples used and which is correlated between measurements within the same data-
taking period, such as Run I, Run IIa or Run IIb, but not between experiments. For CDF
this corresponds to uncertainties associated with the η-dependent JES corrections which
are estimated using di-jet data events. For DØ Run-II this corresponds to uncertainties
associated with the light-quark response as determined using the W → qq ′ invariant mass
in the l+j channel and propagated to the di-l channel. The residual η-dependent and
pT -dependent uncertainties for the DØ Run-II measurements are also included here since
they are constrained using Run-II γ+jet data samples.

rJES: The remaining part of the JES uncertainty which is correlated between all measurements
of the same experiment independent of data-taking period, but is uncorrelated between
experiments. This is dominated by uncertainties in the calorimeter response to light-
quark jets. For CDF this also includes small uncertainties associated with the multiple
interaction and underlying event corrections.

Signal: The systematic uncertainty arising from uncertainties in the modeling of the tt signal
which is correlated across all measurements. This includes uncertainties from variations
in the ISR, FSR, and PDF descriptions used to generate the tt Monte Carlo samples
that calibrate each method. It also includes small uncertainties associated with biases
associated with the identification of b-jets.

Background: The systematic uncertainty arising from uncertainties in modeling the domi-
nant background sources and correlated across all measurements in the same channel.
These include uncertainties on the background composition and shape. In particular
uncertainties associated with the modeling of the QCD multi-jet background (all-j and
l+j), uncertainties associated with the modeling of the Drell-Yan background (di-l), and
uncertainties associated with variations of the fragmentation scale used to model W+jets
background (all channels) are included.

Fit: The systematic uncertainty arising from any source specific to a particular fit method,
including the finite Monte Carlo statistics available to calibrate each method.
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Monte Carlo: The systematic uncertainty associated with variations of the physics model
used to calibrate the fit methods and correlated across all measurements. For CDF it
includes variations observed when substituting PYTHIA [29, 30, 31] (Run I and Run II)
or ISAJET [32] (Run I) for HERWIG [33, 34] when modeling the tt signal. Similar
variations are included for the DØ Run-I measurements. The DØ Run-II measurements
use ALPGEN [35] to model the tt signal and the variations considered are included in
the Signal category above.

UN/MI: This is specific to DØ and includes the uncertainty arising from uranium noise in the
DØ calorimeter and from the multiple interaction corrections to the JES. For DØ Run-I
these uncertainties were sizable, while for Run-II owing to the shorter integration time
and in-situ JES determination, these uncertainties are negligible.

These categories represent the current preliminary understanding of the various sources of
uncertainty and their correlations. We expect these to evolve as we continue to probe each
method’s sensitivity to the various systematic sources with ever improving precision. Varia-
tions in the assignment of uncertainties to the error categories, in the back-propagation of the
bJES uncertainties to Run-I measurements, in the approximations made to symmetrize the
uncertainties used in the combination, and in the assumed magnitude of the correlations all
negligibly effect (� 0.1GeV/c2) the combined Mt and total uncertainty.

4 Correlations

The following correlations are used when making the combination:

• The uncertainties in the Statistical, Fit, and iJES categories are taken to be uncorrelated
among the measurements.

• The uncertainties in the aJES and dJES categories are taken to be 100% correlated among
all Run-I and all Run-II measurements on the same experiment, but uncorrelated between
Run I and Run II and uncorrelated between the experiments.

• The uncertainties in the rJES and UN/MI categories are taken to be 100% correlated
among all measurements on the same experiment.

• The uncertainties in the Background category are taken to be 100% correlated among all
measurements in the same channel.

• The uncertainties in the bJES, cJES, Signal, and Generator categories are taken to be
100% correlated among all measurements.
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Run-I published Run-II preliminary

CDF DØ CDF DØ

l+j di-l all-j l+j di-l l+j di-l all-j lxy l+j/a l+j/b di-l

CDF-I l+j 1.00

CDF-I di-l 0.29 1.00

CDF-I all-j 0.32 0.19 1.00

DØ-I l+j 0.26 0.15 0.14 1.00

DØ-I di-l 0.11 0.08 0.07 0.16 1.00

CDF-II l+j 0.30 0.17 0.16 0.22 0.09 1.00

CDF-II di-l 0.45 0.27 0.33 0.21 0.11 0.24 1.00

CDF-II all-j 0.17 0.11 0.15 0.09 0.05 0.11 0.17 1.00

CDF-II lxy 0.11 0.03 0.02 0.10 0.01 0.16 0.03 0.02 1.00

DØ-II l+j/a 0.16 0.09 0.06 0.11 0.05 0.16 0.07 0.06 0.10 1.00

DØ-II l+j/b 0.11 0.06 0.04 0.09 0.03 0.12 0.04 0.04 0.09 0.20 1.00

DØ-II di-l 0.18 0.12 0.11 0.17 0.08 0.14 0.19 0.07 0.01 0.21 0.14 1.00

Table 2: The resulting matrix of total correlation coefficients used to determined the world
average top quark mass.

Using the inputs from Table 1 and the correlations specified here, the resulting matrix of total
correlation co-efficients is given in Table 2.

The measurements are combined using a program implementing a numerical χ2 minimiza-
tion as well as the analytic BLUE method [22, 23]. The two methods used are mathematically
equivalent, and are also equivalent to the method used in an older combination [36], and give
identical results for the combination. In addition, the BLUE method yields the decomposition
of the error on the average in terms of the error categories specified for the input measure-
ments [23].

5 Results

The combined value for the top-quark mass is:

Mt = 172.6 ± 1.4 GeV/c2 , (1)

with a χ2 of 6.9 for 11 degrees of freedom, which corresponds to a probability of 81% indicating
good agreement among all the input measurements. The total uncertainty can be sub-divided
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Run-I published Run-II preliminary

CDF DØ CDF DØ

l+j di-l all-j l+j di-l l+j di-l all-j lxy l+j/a l+j/b di-l

Pull +0.5 −0.5 +1.2 +1.5 −0.3 +0.1 −0.4 +1.2 +0.5 −0.8 +0.2 +0.2

Weight [%] −4.2 −0.7 −0.6 +1.8 +0.2 +35.8 +9.7 +8.8 −0.7 +15.2 +35.2 −0.6

Table 3: The pull and weight for each of the inputs used to determine the world average mass
of the top quark. See Reference [22] for a discussion of negative weights.

into the contributions from the various error categories as: Statistical (±0.8), total JES (±0.9),
Signal (±0.5), Background (±0.4), Fit (±0.1), Monte Carlo (±0.2), and UN/MI (±0.02), for a
total Systematic (±1.1), where all numbers are in units of GeV/c2. The pull and weight for each
of the inputs are listed in Table 3. The input measurements and the resulting world average
mass of the top quark are summarized in Figure 1.

The weights of many of the Run-I measurements are negative. In general, this situation
can occur if the correlation between two measurements is larger than the ratio of their total
uncertainties. This is indeed the case here. In these instances the less precise measurement
will usually acquire a negative weight. While a weight of zero means that a particular input
is effectively ignored in the combination, a negative weight means that it affects the resulting
central value and helps reduce the total uncertainty. See reference [22] for further discussion of
negative weights.

Although the χ2 from the combination of all measurements indicates that there is good
agreement among them, and no input has an anomalously large pull, it is still interesting to
also fit for the top-quark mass in the all-j, l+j, and di-l channels separately. We use the same
methodology, inputs, error categories, and correlations as described above, but fit for the three
physical observables, M all−j

t , M l+j
t , and Mdi−l

t . The results of this combination are shown in
Table 4 and have χ2 of 4.2 for 9 degrees of freedom, which corresponds to a probability of 90%.
These results differ from a naive combination, where only the measurements in a given channel
contribute to the Mt determination in that channel, since the combination here fully accounts
for all correlations, including those which cross-correlate the different channels. Using the
results of Table 4 we calculate the chi-squared consistency between any two channels, including
all correlations, as χ2(dil − lj) = 0.8, χ2(lj − allj) = 1.5, and χ2(allj − dil) = 2.7. These
correspond to chi-squared probabilities of 39%, 23%, and 10%, respectively, and indicate that
the determinations of Mt from the three channels are consistent with one another.
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Parameter Value (GeV/c2) Correlations

Mall−j
t 177.3 ± 3.9 1.00

M l+j
t 172.4 ± 1.5 0.12 1.00

Mdi−l
t 169.8 ± 3.1 0.18 0.26 1.00

Table 4: Summary of the combination of the nine measurements by CDF and DØ in terms of
three physical quantities, the mass of the top quark in the all-jets, lepton+jets, and di-lepton
channel.

6 Summary

A preliminary combination of measurements of the mass of the top quark from the Tevatron
experiments CDF and DØ is presented. The combination includes five published Run-I mea-
surements and one published plus six preliminary Run-II measurements. Taking into account
the statistical and systematic uncertainties and their correlations, the preliminary world-average
result is: Mt = 172.6± 1.4 GeV/c2, where the total uncertainty is obtained assuming Gaussian
systematic uncertainties and adding them plus the statistical uncertainty in quadrature. While
the central value is somewhat higher than our 2007 average, the averages are compatible as
appreciably more luminosity and refined analysis techniques are now used.

The mass of the top quark is now known with a relative precision of 0.8%, limited by
the systematic uncertainties, which are dominated by the jet energy scale uncertainty. This
systematic is expected to improve as larger data sets are collected since new analysis techniques
constrain the jet energy scale using in-situ W → qq′ decays. It can be reasonably expected
that with the full Run-II data set the top-quark mass will be known to much better than
0.8%. To reach this level of precision further work is required to determine more accurately
the various correlations present, and to understand more precisely the b-jet modeling, Signal,
and Background uncertainties which may limit the sensitivity at larger data sets. Limitations
of the Monte Carlo generators used to calibrate each fit method may also become important as
the precision reaches the ∼ 1 GeV/c2 level and will warrant further study in the near future.
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Mtop   [GeV/c2]

Mass of the Top Quark (*Preliminary)

March 2008

Measurement Mtop   [GeV/c2]
CDF-I   di-l 167.4 ± 11.4

D∅-I     di-l 168.4 ± 12.8

CDF-II  di-l* 171.2 ±  3.9

D∅-II    di-l* 173.7 ±  6.4

CDF-I   l+j 176.1 ±  7.3

D∅-I     l+j 180.1 ±  5.3

CDF-II  l+j* 172.4 ±  2.1

D∅-II   l+j/a* 170.5 ±  2.9

D∅-II   l+j/b* 173.0 ±  2.2

CDF-I   all-j 186.0 ± 11.5

CDF-II  all-j* 177.0 ±  4.1

CDF-II  lxy 180.7 ± 16.8

χ2 / dof  =  6.9 / 11

Tevatron Run-I/II* 172.6 ±  1.4

150 170 190

Figure 1: A summary of the input measurements and resulting world average mass of the top
quark.
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